Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract With rapid progress in simulation of strongly interacting quantum Hamiltonians, the challenge in characterizing unknown phases becomes a bottleneck for scientific progress. We demonstrate that a Quantum-Classical hybrid approach (QuCl) of mining sampled projective snapshots with interpretable classical machine learning can unveil signatures of seemingly featureless quantum states. The Kitaev-Heisenberg model on a honeycomb lattice under external magnetic field presents an ideal system to test QuCl, where simulations have found an intermediate gapless phase (IGP) sandwiched between known phases, launching a debate over its elusive nature. We use the correlator convolutional neural network, trained on labeled projective snapshots, in conjunction with regularization path analysis to identify signatures of phases. We show that QuCl reproduces known features of established phases. Significantly, we also identify a signature of the IGP in the spin channel perpendicular to the field direction, which we interpret as a signature of Friedel oscillations of gapless spinons forming a Fermi surface. Our predictions can guide future experimental searches for spin liquids.more » « lessFree, publicly-accessible full text available December 1, 2025
-
null (Ed.)A bstract The study of quantum gravity in the form of the holographic duality has uncovered and motivated the detailed investigation of various diagnostics of quantum chaos. One such measure is the operator size distribution, which characterizes the size of the support region of an operator and its evolution under Heisenberg evolution. In this work, we examine the role of the operator size distribution in holographic duality for the Sachdev-Ye-Kitaev (SYK) model. Using an explicit construction of AdS 2 bulk fermion operators in a putative dual of the low temperature SYK model, we study the operator size distribution of the boundary and bulk fermions. Our result provides a direct derivation of the relationship between (effective) operator size of both the boundary and bulk fermions and bulk SL(2; ℝ) generators.more » « less
An official website of the United States government
